
IEEE Wireless Communications • October 2013152 1536-1284/13/$25.00 © 2013 IEEE

AC C E P T E D F R O M OP E N CALL

INTRODUCTION
Radio frequency identification (RFID) is a con-
tactless automatic identification technology,
which uses radio frequency signals to identify
specific objects. Compared with bar codes, mag-
netic cards or IC card, RFID has many advan-
tages such as long recognition distance, no
line-of-sight requirement, simultaneous multi-tar-
get identification, resistance to interference. A
typical RFID system is composed of multiple tags
and a reader [1, 2]. The reader sends a command
to the tags or receives related signals from the
tags; while each tag is an electronic device
attached to the object to be identified. The read-
er identifies the tags through a shared wireless
communication channel at a certain carrier fre-
quency[3, 4]. Suppose there are two or more tags
in the interrogation zone of a reader and the
reader broadcasts a query command. If all the
tags that receive the message are to send their
responses back to the reader at the same time,
the responses will collide and the reader will not
be able to identify the tags correctly. Such an
event is referred to as a “collision,” which is an
important issue in an RFID system. It affects (i)
the time taken to identify all the tags and (ii) the
accuracy of the identification. Consequently, vari-
ous anti-collision algorithms have been proposed
and they can be classified into two categories:
tree-based and ALOHA-based.

Tree-based algorithms [5] resolve a collision
by splitting colliding tags into subsets iteratively
until all the tags are identified. Such algorithms
can identify all the tags but they are computa-
tionally complex. Moreover, they require rela-
tively long identification delays, especially when
the number of tags is large. Meanwhile,
ALOHA-based algorithms reduce the probabili-
ty of tag collision by dividing the time into dis-
crete time intervals (time slots) and sequentially
identifying the tags at different time slots [6].
Such algorithms can be implemented easily and
used with an arbitrary number of tags [7]. Hence,
ALOHA-based algorithms are the most preva-
lent ones used in the ultra-high-frequency
(UHF) band in RFID systems. In particular, the
dynamic framed slotted ALOHA (DFSA) algo-
rithms are the most popular [8–12].

In the DFSA algorithms, the number of tags
is usually estimated so as to determine frame
size and to maximize the tag identification effi-
ciency. For example, the DFSA algorithms pro-
posed in [8, 9] make use of collision probability
to estimate the number of tags. Schoute [10]
thinks that the number of coll iding tags is
equal to 2.39 times the number of collided
time slots. The number of tags in a low bound
method proposed by Vogt is S + 2C [11],
where S is the number of single occupied time
slots and C is the number of collision time
slots. If the number of tags is larger than the
initial frame size, a reader will not be able to
estimate the number of tags exactly because
the probability of collision becomes larger. On
the other hand, if the number of tags is smaller
than the initial frame size, many time slots in
the frame will be idle. This leads to a long
identification time and a low efficiency. More-
over, a DFSA algorithm based on the Q-slot
algorithm is proposed in the ISO/IEC 18000-6
Type C standard [1]. The use of the Q-slot
algorithm is to determine the frame size that
can maximize the tag identification efficiency.
In this algorithm, the value of Q is updated
slot by slot according to the status of the pre-
ceding received slot. Splitting BTSA (binary
tree slotted ALOHA) [13] is the latest pro-
posed anti-collision algorithm, where a splitting
method is utilized to adjust the frame size to a
value close to the number of tags. It is also
clear from the literatures that most of the
DFSA anti-collision algorithms have one fea-

YEJUN HE AND XIAOYE WANG, SHENZHEN UNIVERSITY

ABSTRACT
Tag collision arbitration is considered as one

of the critical issues in RFID system design. In
order to further improve the identification effi-
ciency of tag anti-collision algorithms in RFID
systems, several types of dynamic framed slotted
ALOHA (DFSA) anti-collision algorithms are
analyzed, and a new anti-collision algorithm is
proposed. The proposed algorithm has the abili-
ty of identifying the time slot distribution which
is selected by the tags within a reader’s interro-
gation range in advance. Then the free time slots
will be skipped when the reader queries each
time slot. Also, the colliding tags will be immedi-
ately processed with additional time slots. Simu-
lation results show that the proposed algorithm
takes fewer total number of time slots and has a
higher efficiency of tag identification compared
to the other four DFSA anti-collision algorithms.

AN ALOHA-BASED IMPROVED
ANTI-COLLISION ALGORITHM FOR RFID SYSTEMS

HE_LAYOUT_Layout 10/21/13 3:36 PM Page 152

IEEE Wireless Communications • October 2013 153

ture in common — they identify all the tags by
setting a proper frame size iteratively and
hence reducing the probability of tag collision.
However, they do not deal with the colliding
tags immediately and the idle time slots are
wasted.

In this article, we present an improved anti-
collision algorithm based on the DFSA anti-col-
lision algorithm. The proposed algorithm has
two objectives. The first objective is to eliminate
the idle time slots in a frame. Such an action can
reduce the identification time and enhance the
system efficiency. The other objective is to
immediately process the colliding tags in a colli-
sion time slot. We propose allocating extra time
slots to the colliding tags so as to reduce the
probability that the tags collide again in the
future.

The remainder of the article is organized as
follows. First, we provide an overview and points
out the shortcomings of the DFSA anti-collision
algorithm. The next section describes our pro-
posed anti-collision algorithm. The simulation
results and performance analysis for the pro-
posed algorithm are then given, and the final
section concludes the article.

RELATED WORK

DYNAMIC FRAMED SLOTTED ALOHA

In the DFSA algorithms, time is divided into a
series of discrete time intervals called time slots.
Moreover, several time slots are packaged to
form a frame [8, 9]. Figure 1 illustrates the struc-
ture of a frame consisting of F time slots. Upon
receiving a query command that specifies a
frame size of (F) from a reader, the tag will ran-
domly select a time slot between 1 and F to send
its ID information. Details of the DFSA algo-
rithm [9] are as follows:
Step 1: The reader broadcasts a query command

which contains the parameter frame size (F).
Step 2: Each of the tags located within the read-

er’s interrogation zone randomly select a time
slot between 1 and F and transmits its ID at
the selected time slot.

Step 3: The reader attempts to read a tag ID in
each of the time slots. Within each time slot,
there are only three possible outcomes: no ID
is sent, only one ID is sent, and multiple IDs
are sent. When no ID is sent in a time slot,
the time slot becomes idle and the resource is
wasted. When only one ID is sent in a time
slot, the transmission is successful because the
reader will be able to identify the ID. A colli-
sion will happen when multiple tags send their
IDs in the same time slot. The transmissions
collide and the reader will not be able to iden-
tify the IDs.

Step 4: At the end of each frame, the reader
records the numbers of idle time slots, success-
ful time slots, and collided time slots. If there
are collided time slots, the reader will estimate
the number of unidentified tags in the interro-
gation zone. Then an appropriate number of
time slots is determined for the following
frame. The identification process will stop
when there is no collided time slots in the read
process, i.e., all IDs have been identified.

For a particular frame, the throughput [9] is
determined by the frame size (i.e., number of
time slots in the frame) and the number of tags
in the interrogation zone. Figure 2 shows the
relationship between the throughput and the
number of tags in the various frame size F. From
Fig. 2, we can see that the maximum throughput
is attained when the frame size is equal to the
number of tags.

DRAWBACK OF EXISTING
DFSA ANTI-COLLISION METHODS

In the DFSA anti-collision algorithms, a tag esti-
mation method is employed to estimate the
number of remaining tags at the end of each
frame. Then the size of the next frame is adjust-
ed accordingly. No further process is performed
for the idle time slots and collided time slots in
the current frame. Therefore, the idle time slots
and the corresponding request commands sent
by the reader during these time slots are wasted.
Also, the reader does not immediately process
the tag IDs sent in the collided time slots, but
attempts to identify all these collided tag IDs in
the next frame. Consequently, tag collision may
also occur next time for these tags. In the next
section, an improved algorithm is proposed. The
algorithm aims at determining the selected time

Figure 1. Structure of the frame.

Frame K-1

Slot 1 Slot 2 Slot F

Frame K Frame K+1

Figure 2. System throughput vs. number of tags.

Number of tags
1000

0.05

0

Sy
st

em
 t

hr
ou

gh
pu

t

0.10

0.15

0.2

0.25

0.3

0.35

0.4

200 300 400 500

Frame size F=16
Frame size F=32
Frame size F=64
Frame size F=128

HE_LAYOUT_Layout 10/21/13 3:36 PM Page 153

IEEE Wireless Communications • October 2013154

slots in advance, skipping the idle time slots and
instantly processing the collided time slot by the
reader.

THE IMPROVED ALGORITHM
BASED ON DFSA

DESCRIPTION OF THE PROPOSED ALGORITHM

In this section, an improved anti-collision algo-
rithm based on DFSA is proposed. It has the
ability
• To find out in advance the time slot numbers

selected by the tags
• To attempt resolving the tag ID collisions

when they occur
In our algorithm, it is assumed that the number
of tags is approximately equal to the initial
frame size.

For a given time slot number, the reader firstly
analyzes whether it is a selected time slot or not.
Then the reader forms a frame with only the time
slots that have been selceted. In other words, all
the non-selected time slots have been removed
and only the selected ones remain in the frame.
Such an action can greatly improve the efficiency
of the RFID system because no time is now spent
on the time slots not selected by the tags.

Next, for each of the selected time slots, if a
collision occurs, the reader will roughly deter-
mine the number of extra time slots required to
resolve the colliding tags. In our algorithm, we
make the decision based on the ratio of the num-
ber of time slots selected to the frame size (in
time slot). If this ratio is less than 0.5, many time
slots are not selected. Hence there is a relatively
large probability that the collided time slot has
been selected by 3 or 4 tags. Consequently, we
append 4 additional time slots to the frame for
the colliding tags to select. However, if the ratio
is larger than 0.5, there is also a good chance that
the collided time slot has been selected by two
tags. In such a case, we append 2 additional time
slots to the frame for the colliding tags to select.1

In order to implement the proposed algo-
rithm, the following notations are adopted:
• F: An initial frame size on the reader side.
• Sel_slot: The total number of time slots that

are selected by the tags in a reader’s interro-
gation zone on the reader side.

• Ratio_slot: The ratio of the number of selected
time slots to the frame size (in time slot) on
the reader side.

• Position_freeslot(m, n): The position of non-
selected time slots in a frame on the reader side.
Here, m denotes the time slot number of the
first non-selected time slot, and n denotes the
number of non-selected time slots that follow.

• Add_F: The additional time slots used for
identifing colliding tags on the reader side.

• M: A random number generator on the tag
side.

• C: A counter on the tag side.
The proposed algorithm is executed as fol-

lows.
Step 1: The reader broadcasts the query com-

mand “Query(Q)” to start the procedure of
tag identification. The command indicates that
the frame size is equal to 2Q.

Step 2: Each of the tags in the reader’s interro-
gation zone randomly selects a time slot num-
ber between 1 and 2Q, and loads the selected
time slot number into C.

Step 3: All tags send their selected time slot
numbers to the reader at the same time using
sequences with a length of 2Q bits. Denoting
the time slot number selected by a particular
tag by k, the sequence is then an all-zero
sequence except at the k-bit location where it
is a one. For example, if the frame size is 8
and a tag selects the time slot number 2, the
corresponding sequence becomes “01000000.”
Furthermore, during the transmission, the
sequence is coded by the Manchester code.
Note that Manchester code technique can syn-
chronize all tag transmissions at the beginning
of each communication session.

Step 4: Upon receiving the sequences from all
the involving tags, the reader can easily recog-
nize time slots that are selected and those that
are not selected by the tags. At the same time,
the ratio of the number of selected time slots
to the frame size (i.e., Ratio_slot) can be com-
puted.

Step 5: The reader jumps to the next time slot
that has been selected by the tags. In other
words, all non-selected time slots are skipped.
The reader then sends a query command for
this time slot (i.e., “QueryRep(slot)”) to all
the tags and waits for the response. Two sce-
narios may occur. The first one is that only
one tag responds and its ID can be successful-
ly identified by the reader. The other scenario
is that two or more tags respond and a colli-
sion arises.

Step 6: If a collision occurs, the reader will trans-
mit the command “QueryAdd(Add_F)” to pro-
vide additional time slots (append to the
frame) for the colliding tags to select. The col-
liding tags send their selected time slot num-
bers to the reader again and the reader
updates the numbers of the selected time slots.

Step 7: Repeat steps 5 and 6 until all tags are
successfully identified.

FLOWCHART OF THE PROPOSED ALGORITHM
In the proposed algorithm, the following new
commands are used:
• “Query(Q)”: The reader broadcasts a com-

mand to start a new read cycle. The frame
size is equal to 2Q.

• “QueryRep(slot)”: The reader queries a cer-
tain time slot slot.

• “QueryAdd(Add_F)”: This command is used
to deal with the colliding tag IDs. The reader
sends this command to let all colliding tags to
adjust their frame size.
In Fig. 3, we show the flowchart of our pro-

posed algorithm.
The detailed description is as follows:

1. A reader broadcasts a query command
“Query(Q)” with value Q to all tags within
reading range.

2. Upon receiving the command “Query(Q),”
each of the tags randomly selects a time slot
between 1 and 2Q and transmits its ID. Then
it sends the time slot number selected back to
the reader at the same time in the form of
“only one sequence.”

1 In theory, the number of
tags selecting a particular
time slot can be computed
based on binomial distri-
bution theory or approxi-
mated by Poisson
distributions [12. Given
the frame size and the
number of non-selected
time slots, we should be
able to estimate the prob-
ability that a timelsot is
selected by k tags, where k
≥ 1. Based on such infor-
mation, we can more pre-
cisely determine the
number of additional time
slots that we should assign
for the colliding tags to
select. Here, we only use a
simple decision.

For each of the selected
time slots, if a collision
occurs, the reader will
roughly determine the
number of extra time
slots required to resolve
the colliding tags. In our
algorithm, we make the
decision based on the
ratio of the number of
time slots selected to
the frame size.

HE_LAYOUT_Layout 10/21/13 3:36 PM Page 154

IEEE Wireless Communications • October 2013 155

3. After getting the sequences from all tags, the
reader calculates the total number of selected
time slots and the positions of the idle time
slots in one frame. Also, the ratio of the total
number of selected time slots to the frame
size is computed. Let slot = 0.

4. Before querying a time slot, the reader needs
to determine whether the queried time slot is
an idle time slot. If yes, the system goes to 5.
Otherwise, it goes to 6.

5. The current time slot slot is adjusted to m + n.
6. The reader starts to query the time slots one

by one by transmitting the command “QueryS-
lot(slot),” where slot denotes a time slot num-
ber (i.e., current time slot).

7. The reader waits for the response of the tag.
Since all idle time slots have been skipped,
there are only two possible outcomes for a
given time slot. Either one tag responds or
multiple tags respond, and the latter case will
result in tag collision.

8. If collision occurs, the system will start colli-
sion identification procedure immediately.
The number of colliding tags will be estimated
based on the value Ratio_slot and a new frame
size Add_F is allocated to 2 or 4 based on
Ratio_slot.

9. The tag will be successfully identified when
only one tag responds. Then the current time
slot is compared with the value m in
Position_freeslot(m, n). If the current time slot
is equal to m, the system goes to 10. Other-
wise, the system goes to 11.

10. The next query time slot number is adjusted
to m + n.

11. Increment the current time slot by 1.
12. The reader sends “QueryAdd(Add_F)” to

the colliding tags and waits for the responses
of the colliding tags.

13. Upon receiving the command
“QueryAdd(Add_F),” each of the colliding
tags randomly selects a time slot between 1

Figure 3. Flowchart of the proposed architecture.

Y

N

Y
Slots = m + n

Collision processing: use
the value Ratio_slot to set
Add_F

Slots = m + n

1

2

Reader broadcasts query (Q)

Tags randomly select a time slot between 1~2Q

and respond the time slot to reader

Reader sends QuerRep(slot)

Reader identified time slot distribution and records
Sel_slot, Position_freeslot(m,n) and Ratio_slot 3

4Is the current time slot
equal to m in Position_freeslot(m,n)?

Is the number of the response
of the tag equal to one?

Slots = slot + 1

Slots > 2Q?

End

Reader broadcast
QueryAdd(Add_F)

Colliding tags randomly
select a time slot between
1~Add_F and respond the
time slot to the reader

Y

Y

N

N

N

Is slot equal to m in
Position_freeslot(m,n)?

5

6

7
8

9
12

10 11

13

14

15

The total time to identi-
fy all tags is equal to

the total number of time
slots multiplied by the

slot time. Since the slot
time is constant, we

only take the total num-
ber of time slots into

consideration. The small-
er the total number of

time slots is, the better
the performance of the

algorithm is.

HE_LAYOUT_Layout 10/21/13 3:36 PM Page 155

IEEE Wireless Communications • October 2013156

and Add_F and transmits its ID. Then it sends
the time slot number selected back to the
reader at the same time in the form of “only
one sequence.”

14. If the current time slot is less than 2Q, the
system goes to 6. Otherwise, the system goes
to 15.

15. The identification procedure ends.
The pseudo code of our proposed algorithm

is futher depicted in Table 1.

SIMULATION RESULTS AND ANALYSIS

We evaluate the performance of the proposed
algorithm and compare it with that of the
Schoute DFSA algorithm [10], low bound DFSA
[11], Q-algorithm (i.e., the DFSA algorithm in
ISO/IEC 18000-6 Type C [1]), and splitting
BTSA [13]. In our simulations, the number of
tags ranges from 5 to 1000. Moreover, for each
setting, the result is the average of 100 simula-
tions.

Since the performance of a RFID anti-colli-
sion algorithm is mainly determined by the
efficiency of tag identification and the total
time taken to identify all the tags, these two
factors are taken into consideration in our sim-
ulations.

First, the efficiency of tag identification,
denoted by r, is measured by the ratio of the
number of tags (Ntags) to the total number of
time slots (Nslots), that is,

(1)

A larger r indicates an algorithm with a high-
er performance. The total time to identify all
tags is equal to the total number of time slots
multiplied by the slot time. Since the slot time is
constant, we only take the total number of time
slots into consideration. The smaller the total
number of time slots is, the better the perfor-
mance of the algorithm is.

Figure 4a plots the total number of time slots
needed to identify all the tags against the num-
ber of tags. The number of tags increases from 5
to 100. In Schoute DFSA, low bound DFSA and
Q-algorithm, the initial frame size is set to 16
time slots. Moreover, the initial frame size in our
proposed algorithm is set to 64 time slots. From
Fig. 4a, we can see that the performance of the
Schoute DFSA, low bound DFSA and Q-algo-
rithm are very close because they adjust the
frame size based on estimating the number of
tags. The splitting BTSA, which utilizing a split-
ting method to set the frame size to a value
close to the number of tags, provides a better
performance than the above three algorithms.
Moreover, our proposed algorithm requires a
smaller number of time slots compared with
other algorithms and hence achieves the best
performance. Figure 4b plots the total number
of time slots vs. the number of tags for the algo-
rithms when the number of tags ranges from 100
to 1000. The initial frame size is now set to 256
time slots in our proposed algorithm because of
the large number of tags. In Schoute DFSA, low
bound DFSA and Q-algorithm, the initial frame
size is set to 16. Again, as the number of tags
increases, the total number of time slots increas-
es quickly due to tag collisions. However, our
proposed algorithm gives the best performance
in terms of the total number of time slots, espe-
cially for a large number of tags.

Figure 5a further plots the efficiency of tag
identification for the different algorithms. We
can observe that the efficiency of each of the
Schoute DFSA, low bound DFSA, Q-algorithm
and spliting BTSA becomes very stable when the
number of tags is beyond 50. Among these algo-
rithms, moreover, the splitting BTSA attains a
higher efficiency. However, our proposed algo-
rithm outperform other algorithms and achieves
the highest efficiency. We can also see that the
efficiency of our proposed algorithm decreases
with the number of tags. The reason is that when
there are more tags, more collisions occur and
more additional time slots are required to
resolve such colliding tags. Figure 5b further
shows that the efficiency of tag identification for
the algorithms. When the number of tags is 100,
the efficiency of tag identification of the pro-
posed algorithm is about 82 percent while that
of the other algorithms ranges between 30 and
45 percent. There exists a performance gap
between the proposed algorithm and the other
four simulated algorithms because different
methods are used to deal with the collision of
tags. With the increasing of the number of tags,
tag collisions increase and additional time slots
are required to identify the colliding tags. For a

ρ =
N

N
tags

slots

Table 1. Pseudo codes of the proposed algorithm.

1 Input : number of tags
2 Output : total time slot and efficiency of tag identification
3 ---------------Reader Side---------------
4 Initial: Q, F, Sel_slot, Ratio_slot, Position_freeslot(m,n)
5 and Add_F
6 Broadcast : Query(Q)
7 Get the responses of time slot from all tags
8 Analyze the response of time slot information
9 Record Sel_slot, Position_freeslot(m,n)
10 and compute Ratio_slot
11 Query time slot one by one
12 m = 0, k = 0
13 while k <= F
14 if k == position_freeslot(m,l) {
15 k = k + position_freeslot(m,2);
16 m = m + 1;
17 continue; }
18 else if successful time slot
19 total_slot++;
20 k++;
21 else collision time slot
22 total_slot++;
23 go to Used_slot = collision_proc(Ratio_slot, k);
24 total_slot = total_slot + Used_slot;
25 end
26 end
27 Broadcast end round message

---------------Tag Side---------------
28 Initialize C = 0, OnlyO_sequence = 0
29 Respond Query(Q) : OnlyO_sequence=random(1~2Q), C =
30 Only O_sequence and transmit the Only O-sequence
31 While C > 0
32 If Receive QueryRep(slot): C = C – 1
33 end if
34 end while

HE_LAYOUT_Layout 10/21/13 3:36 PM Page 156

IEEE Wireless Communications • October 2013 157

large number of tags, the efficiency of the pro-
posed algorithm is above 45 percent while that
of the splitting BTSA is about 43 percent and
that of the other three algorithms is only about
30 percent. Thus, the performance of the pro-
posed algorithm is the best.

CONCLUSION

In this article, an improved algorithm based on
the dynamic framed slotted ALOHA anti-colli-
sion algorithm was proposed. We analyzed the
position of idle time slots in a frame. The idle
time slots were skipped when the reader queried
tags. For a collision time slot, a collision proce-
dure was instantly started and additional time
slots were set to deal with the colliding tags.
Simulation results show that total number of
time slots of our proposed algorithm was much
fewer than that of the splitting BTSA, low bound
DFSA, Schoute DFSA and Q-algorithm in

ISO/IEC 18000-6 Type C. Also, the efficiency of
tag identification was greatly improved. There-
fore, the identification performance of the pro-
posed scheme is significantly improved.

ACKNOWLEDGMENT
This work is supported by the National Natural
Science Foundation of China (No. 60972037 and
No. 61372077), the Fundamental Research Pro-
gram of Shenzhen City (No. JC201005250067A
and No. JCYJ20120817163755061), the Interna-
tional Cooperative Program of Shenzhen City
(No. ZYA201106090040A), and the Joint Indus-
try-Teaching-Research Program of Guangdong
Province and the Ministry of Education (No.
2011B090400512). We would like to thank Prof.
Francis C.M. Lau of the Hong Kong Polytechnic
University for his valuable suggestions. We
would also like to thank the Editor and the
anonymous reviewers for their insights that
improved the article significantly.

Figure 4. Total number of time slots vs. number of tags.

Number of tags

(a)

100

50

0

To
ta

l n
um

be
r

of
 t

im
es

lo
ts

100

150

200

250

300

350

5 20 30 40 50 60 70 80 90 100

Proposed algorithm
Low bound DFSA
Schoute DFSA
Q algorithm
Splitting BTSA

Number of tags

(b)

200100

500

0

To
ta

l n
um

be
r

of
 t

im
es

lo
ts

1000

1500

2000

2500

3000

3500

300 400 500 600 700 800 900 1000

Proposed algorithm
Low bound DFSA
Schoute DFSA
Q algorithm
Splitting BTSA

Figure 5. Efficiency of tag identification vs. number of tags.

Number of tags

(a)

50

0.3

0.2

Ef
fic

ie
nc

y
of

 t
ag

 id
en

ti
fic

at
io

n

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

Proposed algorithm
Low bound DFSA
Schoute DFSA
Q algorithm
Splitting BTSA

Number of tags

(b)

100

0.3

0.2

Ef
fic

ie
nc

y
of

 t
ag

 id
en

ti
fic

at
io

n

0.4

0.5

0.6

0.7

0.8

0.9

1

200 300 400 500 600 700 800 900 1000

Proposed algorithm
Low bound DFSA
Schoute DFSA
Q algorithm
Splitting BTSA

HE_LAYOUT_Layout 10/21/13 3:36 PM Page 157

IEEE Wireless Communications • October 2013158

REFERENCES
[1] EPCglobal Standard Spec., “EPC™ Radio-Frequency

Identification Protocols Class-1 Generation-2 UHF RFID
Protocol for Communications at 860 MHz–960 MHz
ver. 1.0.9.,” Jan. 2005, pp. 1–94.

[2] R. Want, “An Introduction to RFID Technology,” IEEE
Pervasive Computing, vol. 5, no. 1, Jan.–Mar. 2006, pp.
25–33.

[3] Z. Shi, C. Beard, and K. Mitchell, “Analytical Models for
Understanding Misbehavior and MAC Friendliness in
CSMA Networks,” Performance Evaluation, vol. 66,
Sept. 2009, pp. 469–87.

[4] Z. Shi, C. Beard, and K. Mitchell, “Analytical Models for
Understanding Space, Backoff and Flow Correlation in
CSMA Wireless Networks,” Wireless Networks, Springer,
published online, July 2012.

[5] Z. Yu and X. Liu, “Improvement of Dynamic Binary
Search Algorithm Used in RFID System,” Cross Strait
Quad-Regional Radio Science and Wireless Technology
Conf., vol. 2, July 2011, pp. 1046–49.

[6] L. Zhu and T. S. P. Yum, “A Critical Survey and Analysis
of RFID Anti-Collision Mechanisms,” IEEE Commun.
Mag., vol. 49, no. 5, May 2011, pp. 214–21.

[7] S. Piramuthu, “Anti-Collision Algorithm for RFID Tags,”
Proc. Conf. Mobile and Pervasive Computing, Aug.
2008, pp. 116–18.

[8] S. R. Lee, S. D. Joo, and C. W. Lee, “An Enhanced
Dynamic Framed Slotted ALOHA Algorithm for RFID Tag
Identification,” 2nd Annual Int’l. Conf. Mobile and
Ubiquitous Sys.: Networking and Services, July 2005,
pp. 166–72.

[9] W. T. Chen, “An Accurate Tag Estimate Method for
Improving the Performance of an RFID Anticollision
Algorithm Based on Dynamic Frame Length Aloha,”
IEEE Trans. Automation Sci. and Eng., vol. 6, no.1, Jan.
2009, pp. 9–15.

[10] F. C. Schoute, “Dynamic Frame Length ALOHA,” IEEE
Trans. Commun., vol. 31, no. 4, Apr. 1983, pp. 565–68.

[11] H. Vogt, “Efficient Object Identification with Passive
RFID Tags,” Proc. Int’l. Conf. Pervasive Computing,
LNCS, vol. 2414, Aug. 2002, pp. 98–113.

[12] C. F. Lin and F. Y. S. Lin, “Efficient Estimation and Col-
lision-Group-Based Anticollision Algorithms for Dynamic
Frame-Slotted ALOHA in RFID Networks,” IEEE Trans.
Automation Sci. and Eng., vol. 7, no. 4, Oct. 2010, pp.
840–48.

[13] H. Wu et al., “Binary Tree Slotted ALOHA for Passive
RFID Tag Anti-Collision,” IEEE Trans. Parallel and Distrib.
Sys., vol. 24, no. 1, 2013, pp. 19–31.

BIOGRAPHIES
YEJUN HE [SM’09] (heyejun@126.com) received his PhD
degree in Information and Communication Engineering
from Huazhong University of Science and Technology
(HUST) in 2005, MS degree in Communication and Infor-
mation System from Wuhan University of Technology
(WHUT) in 2002, and his BS degree from Huazhong Univer-
sity of Science and Technology in 1994. From Sept. 2005
to Mar. 2006, he was a Research Associate with the
Department of Electronic and Information Engineering, The
Hong Kong Polytechnic University. From April 2006 to Mar.
2007, he was a Research Associate with the Department of
Electronic Engineering, Faculty of Engineering, The Chinese
University of Hong Kong. From July 2012 to August 2012,
he was a Visiting Professor with Department of Electrical
and Computer Engineering, University of Waterloo, Water-
loo, ON, Canada. Dr. He is currently a Professor at Shen-
zhen University, China. His research interests include
channel coding and modulation; MIMO-OFDM wireless
communication; space-time processing; smart antennas;
RFID and so on. Dr. He is a senior member of China Insti-
tute of Communications and China Institute of Electronics.
He is also serving or has served as a reviewer/technical pro-
gram committee member/session chair for various journals
and conferences, including IEEE Transactions on Vehicular
Technology, IEEE Communications Letters, International
Journal of Communication Systems, IEEE VTC (2008-
Spring, 2009-Spring, 2012-Fall), IEEE WCNC2012, IEEE
WCNC2013 and so on. He acted as the Publicity Chair of
IEEE PIMRC2012. He serves as an Associate Editor of the
Security and Communication Networks Journal since 2012.

XIAOYE WANG (wangxiaoye2013@126.com) received her B.S.
degree in electronic information engineering from Hunan
University of Science and Engineering, China, in 2010 and
is pursuing her M.S. degree at Shenzhen University, China.
Her research interests include RFID and cognitive radio.

For a large number of
tags, the efficiency of
the proposed algorithm
is above 45 percent
while that of the split-
ting BTSA is about
43 percent and that of
the other three algo-
rithms is only about
30 percent. Thus, the
performance of the
proposed algorithm is
the best.

HE_LAYOUT_Layout 10/21/13 3:36 PM Page 158

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

